History
Main article: History of the transistor
A replica of the first working transistor.
The thermionic triode, a vacuum tube invented in 1907, propelled the electronics age forward, enabling amplified radio technology and long-distancetelephony. The triode, however, was a fragile device that consumed a lot of power. Physicist Julius Edgar Lilienfeld filed a patent for a field-effect transistor(FET) in Canada in 1925, which was intended to be a solid-state replacement for the triode.[1][2] Lilienfeld also filed identical patents in the United States in 1926[3] and 1928.[4][5] However, Lilienfeld did not publish any research articles about his devices nor did his patents cite any specific examples of a working prototype. Since the production of high-quality semiconductor materials was still decades away, Lilienfeld's solid-state amplifier ideas would not have found practical use in the 1920s and 1930s, even if such a device were built.[6] In 1934, German inventor Oskar Heil patented a similar device.[7]
From November 17, 1947 to December 23, 1947, John Bardeen and Walter Brattain at AT&T's Bell Labs in the United States, performed experiments and observed that when two gold point contacts were applied to a crystal of germanium, a signal was produced with the output power greater than the input.[8]Solid State Physics Group leader William Shockley saw the potential in this, and over the next few months worked to greatly expand the knowledge of semiconductors. The term transistor was coined by John R. Pierce as a portmanteau of the term "transfer resistor".[9][10] According to Lillian Hoddeson and Vicki Daitch, authors of a recent biography of John Bardeen, Shockley had proposed that Bell Lab's first patent for a transistor should be based on the field-effect and that he be named as the inventor. Having unearthed Lilienfeld’s patents that went into obscurity years earlier, lawyers at Bell Labs advised against Shockley's proposal since the idea of a field-effect transistor which used an electric field as a “grid” was not new. Instead, what Bardeen, Brattain, and Shockley invented in 1947 was the first bipolar point-contact transistor.[6] In acknowledgement of this accomplishment, Shockley, Bardeen, and Brattain were jointly awarded the 1956 Nobel Prize in Physics "for their researches on semiconductors and their discovery of the transistor effect."[11]
In 1948, the point-contact transistor was independently invented by German physicists Herbert Mataré and Heinrich Welker while working at the Compagnie des Freins et Signaux, a Westinghousesubsidiary located in Paris. Mataré had previous experience in developing crystal rectifiers from silicon and germanium in the German radar effort during World War II. Using this knowledge, he began researching the phenomenon of "interference" in 1947. By witnessing currents flowing through point-contacts, similar to what Bardeen and Brattain had accomplished earlier in December 1947, Mataré by June 1948, was able to produce consistent results by using samples of germanium produced by Welker. Realizing that Bell Lab's scientists had already invented the transistor before them, the company rushed to get its "transistron" into production for amplified use in France's telephone network.[12]
The first silicon transistor was produced by Texas Instruments in 1954.[13] This was the work of Gordon Teal, an expert in growing crystals of high purity, who had previously worked at Bell Labs.[14]The first MOS transistor actually built was by Kahng and Atalla at Bell Labs in 1960.[15]
[edit]Importance
The transistor is the key active component in practically all modern electronics. Many consider it to be one of the greatest inventions of the 20th century.[16] Its importance in today's society rests on its ability to be mass produced using a highly automated process (semiconductor device fabrication) that achieves astonishingly low per-transistor costs. The invention of the first transistor at Bell Labswas named an IEEE Milestone in 2009.[17]
Although several companies each produce over a billion individually packaged (known as discrete) transistors every year,[18] the vast majority of transistors now are produced in integrated circuits(often shortened to IC, microchips or simply chips), along with diodes, resistors, capacitors and other electronic components, to produce complete electronic circuits. A logic gate consists of up to about twenty transistors whereas an advanced microprocessor, as of 2011, can use as many as 3 billion transistors (MOSFETs).[19] "About 60 million transistors were built in 2002 ... for [each] man, woman, and child on Earth."[20]
The transistor's low cost, flexibility, and reliability have made it a ubiquitous device. Transistorized mechatronic circuits have replaced electromechanical devices in controlling appliances and machinery. It is often easier and cheaper to use a standard microcontroller and write a computer program to carry out a control function than to design an equivalent mechanical control function. READ MORE THE ARTICELS
www.wikipedia.com